Cardiomyocytes derived from human induced pluripotent stem cells as models for normal and diseased cardiac electrophysiology and contractility.

نویسندگان

  • Adriana Blazeski
  • Renjun Zhu
  • David W Hunter
  • Seth H Weinberg
  • Elias T Zambidis
  • Leslie Tung
چکیده

Since the first description of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), these cells have garnered tremendous interest for their potential use in patient-specific analysis and therapy. Additionally, hiPSC-CMs can be derived from donor cells from patients with specific cardiac disorders, enabling in vitro human disease models for mechanistic study and therapeutic drug assessment. However, a full understanding of their electrophysiological and contractile function is necessary before this potential can be realized. Here, we review this emerging field from a functional perspective, with particular emphasis on beating rate, action potential, ionic currents, multicellular conduction, calcium handling and contraction. We further review extant hiPSC-CM disease models that recapitulate genetic myocardial disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finding the rhythm of sudden cardiac death: new opportunities using induced pluripotent stem cell-derived cardiomyocytes.

Sudden cardiac death is a common cause of death in patients with structural heart disease, genetic mutations, or acquired disorders affecting cardiac ion channels. A wide range of platforms exist to model and study disorders associated with sudden cardiac death. Human clinical studies are cumbersome and are thwarted by the extent of investigation that can be performed on human subjects. Animal ...

متن کامل

Exosomes Secreted by Normoxic and Hypoxic Cardiosphere-derived Cells Have Anti-apoptotic Effect

Cardiosphere-derived cells (CDCs) have emerged as one of the most promising stem cell types for cardiac protection and repair. Exosomes are required for the regenerative effects of human CDCs and mimic the cardioprotective benefits of CDCs such as anti-apoptotic effect in animal myocardial infarction (MI) models. Here we aimed to investigate the anti-apoptotic effect of the hypoxic and normoxic...

متن کامل

Exosomes Secreted by Normoxic and Hypoxic Cardiosphere-derived Cells Have Anti-apoptotic Effect

Cardiosphere-derived cells (CDCs) have emerged as one of the most promising stem cell types for cardiac protection and repair. Exosomes are required for the regenerative effects of human CDCs and mimic the cardioprotective benefits of CDCs such as anti-apoptotic effect in animal myocardial infarction (MI) models. Here we aimed to investigate the anti-apoptotic effect of the hypoxic and normoxic...

متن کامل

Characterization of Cytoskeleton Features and Maturation Status of Cultured Human iPSC-derived Cardiomyocytes

Recent innovations in stem cell technologies and the availability of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have opened new possibilities for studies and drug testing on human cardiomyocytes in vitro. Still, there are concerns about the precise nature of such 'reprogrammed' cells. We have performed an investigation using immunocytochemistry and confocal microscop...

متن کامل

The effects of cardioactive drugs on cardiomyocytes derived from human induced pluripotent stem cells.

Developing effective drug therapies for arrhythmic diseases is hampered by the fact that the same drug can work well in some individuals but not in others. Human induced pluripotent stem (iPS) cells have been vetted as useful tools for drug screening. However, cardioactive drugs have not been shown to have the same effects on iPS cell-derived human cardiomyocytes as on embryonic stem (ES) cell-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Progress in biophysics and molecular biology

دوره 110 2-3  شماره 

صفحات  -

تاریخ انتشار 2012